Python知识分享网 - 专业的Python学习网站 学Python,上Python222
使用自我监督学习的亚米分辨率冠层高度图和用于航空和GEDI激光雷达训练的视觉转换器 PDF 下载
匿名网友发布于:2025-06-01 10:39:11
(侵权举报)
(假如点击没反应,多刷新两次就OK!)

使用自我监督学习的亚米分辨率冠层高度图和用于航空和GEDI激光雷达训练的视觉转换器 图1

 

 

资料内容:

 

Highlights
Sub-meter resolution canopy height maps using self-supervised learn-
ing and a vision transformer trained on Aerial and GEDI Lidar
Jamie Tolan1, Hung-I Yang1, Ben Nosarzewski1, Guillaume Couairon2 , Huy
Vo2 , John Brandt3, Justine Spore3, Sayantan Majumdar4, Daniel Haziza2,
Janaki Vamaraju1, Theo Moutakani2, Piotr Bojanowski2, Tracy Johns1, Brian
White1, Tobias Tiecke1, Camille Couprie2

0.5 meter resolution canopy height maps at jurisdictional scale are re-
leased.

Improved performance from Self-Supervised Learning (SSL) and vision
transformers.

First use of SSL and vision transformers for canopy height estimation.

Low resolution GEDI and high resolution aerial lidar predictions are
combined.

Model generalises well to aerial imagery, even though trained with satel-
lite images.