资料内容:
1.4什么是监督学习?什么是非监督学习?
所有的回归算法和分类算法都属于监督学习。并且明确的给给出初始值,在训练集中有特征和标签,并且通过训练获得一个模型,在面对只有特征而没有标签的数据时,能进行预测。
监督学习:通过已有的一部分输入数据与输出数据之间的对应关系,生成一个函数,将输入映射到合适的输出,例如 分类。
非监督学习:直接对输入数据集进行建模,例如强化学习、K-means 聚类、自编码、受限波尔兹曼机。
半监督学习:综合利用有类标的数据和没有类标的数据,来生成合适的分类函数。
目前最广泛被使用的分类器有人工神经网络、支持向量机、最近邻居法、高斯混合模型、朴素贝叶斯方法、决策树和径向基函数分类。
无监督学习里典型的例子就是聚类了。聚类的目的在于把相似的东西聚在一起,一个聚类算法通常只需要知道如何计算相似度就可以开始工作了。